organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

K. Chinnakali,^a‡ M. Poornachandran,^b R. Raghunathan^b and Hoong-Kun Fun^c*

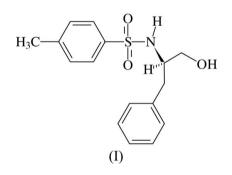
^aDepartment of Physics, Anna University, Chennai 600 025, India, ^bDepartment of Organic Chemistry, University of Madras, Guindy Campus, Chennai 600 025, India, and ^c X-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia

‡ Additional correspondence author, email: kali@annauniv.edu

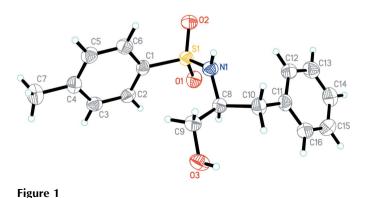
Correspondence e-mail: hkfun@usm.my

Key indicators

Single-crystal X-ray study T = 100 KMean σ (C–C) = 0.003 Å R factor = 0.041 wR factor = 0.112 Data-to-parameter ratio = 22.3

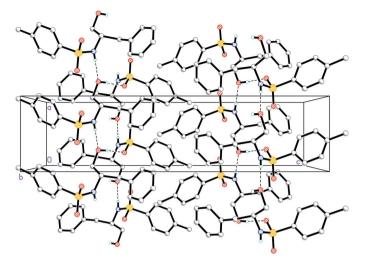

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

(S)-3-Phenyl-2-(tosylamino)propan-1-ol


In the title compound, $C_{16}H_{19}NO_3S$, the dihedral angle between the benzene and phenyl rings is 54.17 (6)°. In the crystal structure, the molecules are linked into a twodimensional network parallel to the (001) plane by N– $H \cdots O$ and $O-H \cdots O$ hydrogen bonds.

Comment

Benzenesulfonamide derivatives have been reported to possess significant biological activities, such as antibacterial (Nieto *et al.*, 2005), anticancer and anti-HIV (Pomarnacka & Kozlarska-Kedra, 2003), antitumor (Yang *et al.*, 2002), and are used as cyclooxygenase-2 (COX-2) inhibitors (Chen *et al.*, 2005). We report here the structure of the title compound, (I), a benzenesulfonamide derivative.



The geometry of the benzenesulfonamide unit in (I) (Table 1) agrees with that observed in similar structures (Xing *et al.*, 2006; Zareef *et al.*, 2006). The sum of the bond angles around atom N1 (357.8°) indicates sp^2 hybridization. The bond lengths and angles in the aminophenyl-propan-1-ol fragment agree with those reported for (*S*)-*N*-(1-benzyl-2-hydroxy-

© 2007 International Union of Crystallography All rights reserved The molecular structure of (I), showing 80% probability displacement ellipsoids and the atomic numbering scheme.

Received 28 December 2006 Accepted 23 January 2007

Figure 2

A view of the hydrogen-bonded (dashed lines) network in (I). For clarity, H atoms not involved the network have been omitted.

ethyl)benzamide (Cai et al., 2005). The dihedral angle between the benzene and phenyl rings is $54.17 (6)^{\circ}$.

Molecules translated by one unit along the *a* axis are linked through N1-H1···O3ⁱ hydrogen bonds, forming a C(6) chain. Screw-related molecules in adjacent chains are cross-linked via O3-H3O···O1ⁱⁱ hydrogen bonds, forming a two-dimensional network parallel to the (001) plane (Fig. 2). This twodimensional network is constructed via $R_4^4(18)$ motifs. The network structure is further strengthened by weak $C-H \cdots O$ hydrogen bonds, and $C-H\cdots\pi$ interactions involving the sulfonyl-bound benzene ring; see Table 2 for symmetry codes.

Experimental

NaOH (10%, 5 ml) was added dropwise to a solution of (S)phenylalaninol (1 mmol), p-toluenesulfonyl chloride (1 mmol) and a catalytic amount of tetrabutylammonium fluoride in benzene (20 ml) at 273 K. The reaction mixture was stirred at room temprature for 6 h, and the organic layer separated, concentrated and chromatographed to obtain the title compound. Crystals were grown by slow evaporation of a hexane-ethyl acetate (8:2 v/v) solution.

Crystal data

C ₁₆ H ₁₉ NO ₃ S	Z = 4
$M_r = 305.38$	$D_x = 1.329 \text{ Mg m}^{-3}$
Orthorhombic, $P2_12_12_1$	Mo K α radiation
a = 5.6735 (1) Å	$\mu = 0.22 \text{ mm}^{-1}$
b = 11.5920 (2) Å	T = 100.0 (1) K
c = 23.2014 (4) Å	Block, colorless
V = 1525.89 (5) Å ³	0.25 × 0.16 × 0.10 mm
V = 1525.89 (5) A ³ Data collection Bruker SMART APEX2 CCD	0.25 × 0.16 × 0.10 mm 20899 measured reflections

diffractometer ω scans Absorption correction: multi-scan (SADABS; Bruker, 2005) $T_{\min} = 0.870, \ T_{\max} = 0.979$

4447 independent reflections 3743 reflections with $I > 2\sigma(I)$ $R_{\rm int}=0.056$ $\theta_{\rm max} = 30.2^{\circ}$

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.041$ $wR(F^2) = 0.112$ S = 1.10	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0569P)^{2}]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.28 \text{ e } \text{\AA}^{-3}$
4447 reflections	$\Delta \rho_{\rm min} = -0.47 \text{ e } \text{\AA}^{-3}$
199 parameters	Absolute structure: Flack (1983),
H atoms treated by a mixture of	1840 Friedel pairs
independent and constrained refinement	Flack parameter: -0.09 (7)

Table 1 Selected torsion angles (°).

C1-S1-N1-C8	74.69 (18)	C10-C8-C9-O3	-66.8(2)
N1-S1-C1-C6	71.65 (17)	N1-C8-C10-C11	-77.4(2)
S1-N1-C8-C10	145.93(14)	C9-C8-C10-C11	159.27 (18)
S1-N1-C8-C9	-90.75(19)	C8-C10-C11-C12	71.2 (3)

Table 2		
Hydrogen-bond geometry	′ (Å,	°).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N1 - H1 \cdots O3^i$	0.84 (3)	2.04 (3)	2.870 (2)	171 (2)
O3−H3O···O1 ⁱⁱ	0.88 (3)	1.89 (3)	2.770 (2)	175 (3)
$C2-H2\cdots O2^{iii}$	0.95	2.49	3.152 (2)	126
$C10-H10B\cdots O1^{ii}$	0.99	2.50	3.381 (2)	148
$C3-H3\cdots Cg1^{iv}$	0.95	2.73	3.481 (2)	136

Symmetry codes: (i) x - 1, y, z; (ii) $-x + 2, y - \frac{1}{2}, -z + \frac{1}{2}$; (iii) x + 1, y, z; (iv) $x + \frac{1}{2}, -y + \frac{3}{2}, -z$. Cg1 is the centroid of the sulforyl-bound benzene ring.

The imino and hydroxyl H atoms were located in a difference map and refined isotropically. The remaining H atoms were positioned geometrically and were treated as riding on their parent C atoms, with C-H = 0.95-1.00 Å and $U_{iso}(H) = 1.2U_{eq}(C)$ or $1.2U_{eq}(methyl C)$. A rotating-group model was used for the methyl group.

Data collection and cell refinement: APEX2 (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve and refine structure: SHELXTL (Sheldrick, 1998); molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003).

HKF thanks the Malaysian Government and Universiti Sains Malaysia for Scientific Advancement Grant Allocation (SAGA) grant No. 304/PFIZIK/653003/A118 and USM shortterm grant No. 304/PFIZIK/635028.

References

Bruker (2005). APEX2 (Version 1.27), SAINT (Version 7.12A) and SADABS (Version 2004/1). Bruker AXS Inc., Madison, Wisconsin, USA.

- Cai, Y.-M., Fang, H., Jin, Y., Zeng, Q.-L. & Zhao, Y.-F. (2005). Acta Cryst. E61, 03912-03913.
- Chen, Q. H., Rao, P. N. & Knaus, E. E. (2005). Bioorg. Med. Chem. 13, 2459-2468
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Nieto, M. J., Alovero, F. L., Manzo, R. H. & Mazzieri, M. R. (2005). Eur. J. Med. Chem. 40, 361-369.
- Pomarnacka, E. & Kozlarska-Kedra, I. (2003). Il Farmaco, 58, 423-429.
- Sheldrick, G. M. (1998). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
- Xing, J.-D., Bai, G.-Y., Zeng, T. & Li, J.-S. (2006). Acta Cryst. E62, 079-080.
- Yang, L. M., Lin, S. J., Hsu, F. L. & Yang, T. H. (2002). Bioorg. Med. Chem. Lett. 12, 1013-1015.
- Zareef, M., Iqbal, R., Zaidi, J. H., Arfan, M. & Parvez, M. (2006). Acta Cryst. E62, o2481-o2483.